

Wide Bandgap Semiconductor Technology Initiative

Briefing to Industry

Dr. Edgar J. Martinez

DARPA/MTO

Wide Bandgap Semiconductor Technology Initiative Day

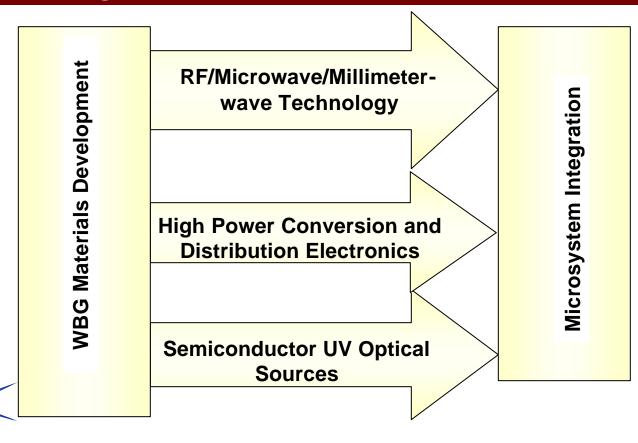
Agenda

<u>Wednesday</u>			
7:00 – 8:30	Registration and Continental Breakfast (Ballroom Foyer)		
8:30 – 8:45	Welcome / Introduction	Dr. Edgar J. Martinez Dr. Robert Leheny	DARPA/PM DARPA/MTO Director
8:45 – 9:30	Wide Bandgap Semiconductor Technology Initiative and BAA Process	Dr. Edgar Martinez	DARPA/PM
9:30 - 10:00	Materials Technology	Ms. Laura Rea	AFRL
10:00 - 10:30	Break		
10:30 – 11:00	Device and Circuit Technology	Dr. John Zolper	ONR
11:00 – 11:30	Materials-Device Correlation Activities	Mr. Thomas Jenkins	AFRL
11:30 – 12:00	High Power Electronics Update	Dr. Daniel Radack	IDA
12:00 – 1:30	Lunch		
1:30 – 2:00	Semiconductor UV Optical Sources	LTC John Carrano	DARPA/PM
2:00 – 2:30	Break		
2:30 – 4:30	Questions and Answers	Dr. Edgar J. Martinez	DARPA/PM
4:30	Adjourn		

Outline

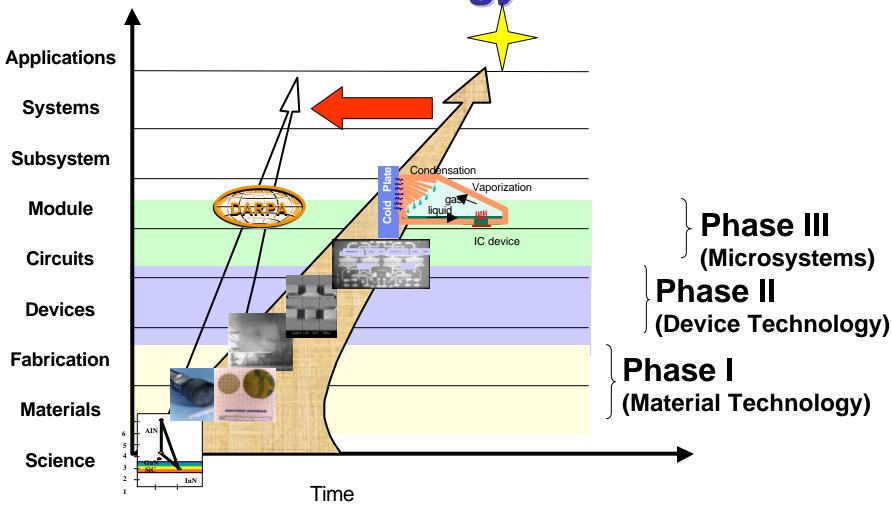
- WBGS Technology Initiative Overview
- BAA 01-35 Objectives and Structure
- Thrust I: RF/Microwave/Mm-wave Technology Area
- Thrust II: High Power Conversion and Distribution Electronics
- BAA 01-35 Procurement Process

WBGS Technology Initiative Objectives


Enable revolutionary advances:

- Radio Frequency (RF) systems
- Novel approaches for High Power Electrical (HPE) Control and Conversion
- New applications for UV optical sources

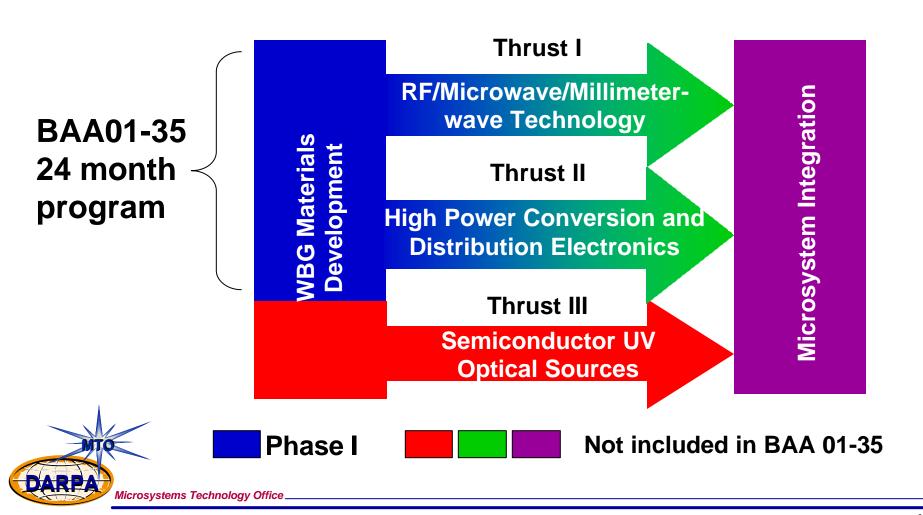
through the development and exploitation of the material, device, and circuit properties of Wide Bandgap Semiconductors (WBGS).


WBGS Technology Initiative Structure

Multi-disciplinary technology initiative crosscutting 5 critical areas of WBGS R&D

Microsystems Technology Office

WBGS Technology Innovation


DARPA's mission is to accelerate development while focusing on military relevant applications

Microsystems Technology Office

Outline

- WBGS Technology Initiative Overview
- BAA 01-35 Objectives and Structure
- Thrust I: RF/Microwave/Mm-wave Technology Area
- Thrust II: High Power Conversion and Distribution Electronics
- BAA 01-35 Procurement Process

Wide Bandgap Semiconductor Technology Initiative Research Opportunities

BAA 01-35 Focus

Materials development in support of RF and HPE (Thrust areas I and II)

- Substrate technologies
 - Semi-insulating substrates (RF)
 - Large area, high quality substrates (RF, HPE)
- Epitaxial technologies
 - High uniformity (RF, HPE)
 - High growth rates (HPE, RF)
- Fabrication
 - Wafering (RF, HPE)
 - Oxidation (HPE)
 - Devices (RF, HPE)

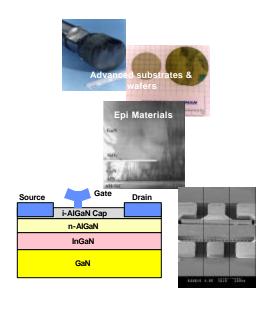
Materials activities in support of the development of Opto-electronic devices will be pursued under a different Broad Agency Announcement

Microsystems Technology Office.

Outline

- WBGS Technology Initiative Overview
- BAA 01-35 Objectives and Structure
- Thrust I: RF/Microwave/Millimeter wave Technology Area
- Thrust II: High Power Conversion and Distribution Electronics
- BAA 01-35 Procurement Process

Thrust Area I: RF/Microwave/Millimeter-wave Technology



RF Thrust Organization

- Phase 0 Concept Study
- Phase I WBGS Materials Development
- Phase II* Device and Circuit Technologies
- Phase III* MMIC Concurrent Engineering Demonstrations

* To be solicited through future BAAs

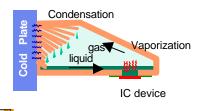
Thrust I Goals

Material Technology

Epitaxial Materials

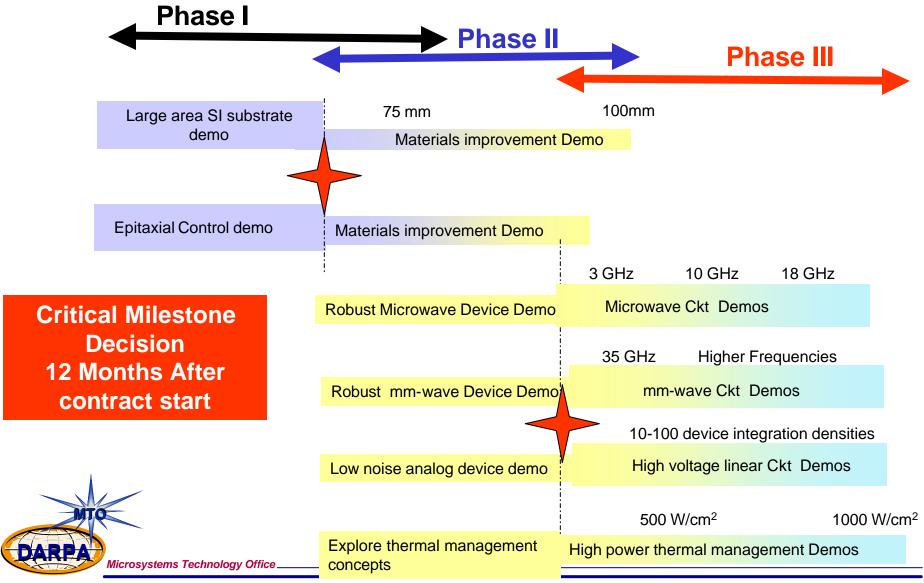
Fabrication Technology

- > 100 mm SI substrates
- Better than ± 1% composition, thickness, and doping control
- High frequency
- large periphery devices
 - microwaves and mm-waves



Devices and Integrated Circuits

Integration


Demonstration of:

- Solid-state power amplifiers
- Low-noise amplifiers
- Linear analog ICs
- > 1 KW/cm² thermal **High Power Electronic** • management techniques

Microsystems Technology Office

Program Schedule

Phase 0: Concept Study

It is not essential that Phase I offerors submit a proposal for Phase 0, and conversely

- Duration Six months
- Deliverables Final report

Phase 0: Concept Study

(Six month initial effort)

- System Study and Analysis
 - Identify potential applications for WBGS MMICs
 - Derive component requirements
- Technology Assessment
 - Derive device and material specifications
 - Identify current limitations and technical issues
- Assessment of Future Technology Development
 - Identify specific approaches to overcome current limitations
 - Identify critical experiments
 - Identify ancillary technologies to support the development of WBGS MMICs

System Study and Analysis

- Minimum of one military system area (radar, EW, communications, smart weapons, etc.)
- Potential component demonstration Phase III
- Prefer those that meet an identified DoD customer's vision and requirements
- Identify trade-off assessment (performance/system architecture/cost) among possible MMIC alternatives

Examples of relevant information

- Quantitative operational performance enhancements or new capabilities (e.g. range, resolution, accuracy, data rate, etc.)
- Quantitative benefits (e.g. size, weight volume, cost, reliability, etc.)
- Impact on system architecture
- Identify windows of opportunity

Technology Assessments

- Specific requirements for substrates and epitaxial materials
- Device parameters and performance requirements
- Specific fabrication process issues
- Special test and evaluation tools and/or methodologies that need to be developed
- Packaging and thermal management requirements

Phase I: WBGS Materials Development In Support of RF Applications

Objectives:

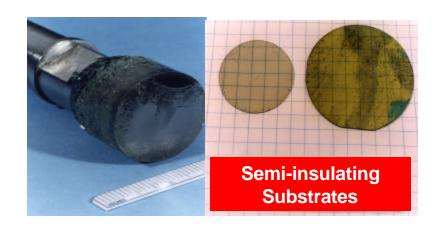
Demonstrate revolutionary advances in materials, growth processes, and fabrication processes establishing a strong foundation for future efforts directed toward establishment of robust, mature processes for fabricating WBGS devices and ICs.

Duration – 24 months

Critical Milestones – 12 months after beginning of effort

Activities

Task 1.1 Semi-insulating SiC Substrate Technology


Task 1.2 Alternative WBGS Substrate Technology

Task 1.3 Epitaxial Material Technologies

Task 1.4 Material-Device Correlations

Task 1.1: Semi-Insulating SiC Substrate Technology Task 1.2: Alternative WBGS Substrate Technology

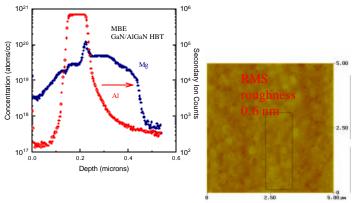
Program End Goals:

- Diameter > 100 mm (90 % useable area)
- Resistivity 10⁵ ohms-cm @ 573 K
- Thermal Conductivity > 4W/cm-K
- Micropipe density < 1 /cm²

Technical sound approaches that will lead to reproducible and low cost to manufacture processes

Microsystems Technology Office.

Areas of Interest


- Crystal growth science and techniques
- Growth process modeling and optimization
- Fabrication processes (wafering)
- Materials characterization

Collaboration with research groups interested in epitaxial material technology (Task 1.3) is highly encouraged

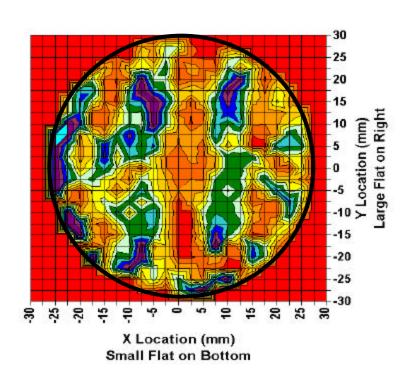
Microsystems Technology Office.

Task 1.3 Epitaxial Material Technology

Goals:

- Innovative epi-processes that will result in better than <u>+</u> 1% variation over large area substrates:
 - Thickness
 - Composition
 - Doping concentration
- Support devices operating at S-, X-, Ku, Ka-, and higher frequency bands

Technical sound approaches that will lead to reproducible and low cost to manufacture processes


Areas of Interest

- Crystal growth science and techniques
- Growth process modeling and optimization
- Fabrication processes (wafering)
- Materials characterization

Collaboration with research groups interested in substrate technology (Task 1.1 & 1.2) is highly encouraged

Microsystems Technology Office.

Task 1.4 Material-Device Correlation Activities

Goals:

- Determine the suitability of device structures for different applications
- Determine the impact of improvements in material metrics on device performance
- Determine the appropriateness of the material uniformity for high yield processes
- Support devices operating at S-, X-, Ku, Ka-, and higher frequency bands
 - High output power
 - Low noise
 - Others

What is included under this task

Proposers should provide details on how the following activities will be carried out

- Establishment of a material-device correlation plan that will provide for exchange of information leading to improved materials for device applications
- Execution of the correlation plan (i.e. wafer-to-wafer, intra-wafer data analysis)
- Test reports summarizing progress
- Test, analysis and correlation data in electronic format
- Availability of materials and characterization devices for government laboratory test and evaluation

What is not included under Task 1.4

- Extensive device and IC fabrication process optimization efforts (Phase II)
- Application specific MMIC demonstrations (Phase III)

- WBGS Technology Initiative Overview
- BAA 01-35 Objectives and Structure
- Thrust I: RF/Microwave/Mm-wave Technology Area
- Thrust II: High Power Conversion and Distribution Electronics
- BAA 01-35 Procurement Process

Thrust Area II High Power Conversion and Distribution Electronics

All Electric Combat Vehicle (AECV)

Objectives:

Develop high power solid-state electronics in response to critical military needs for switching devices and integrated circuits that can meet the high-current, high-voltage, and speed requirements of electric components and sub-systems in emerging military applications.

Areas of Interest

- High power semiconductor materials and processes (12-18 month efforts*)
- High power devices
- High power integrated circuit technologies

* Milestone demonstrating materials suitability will be required

Task 1: High power semiconductor materials and processes

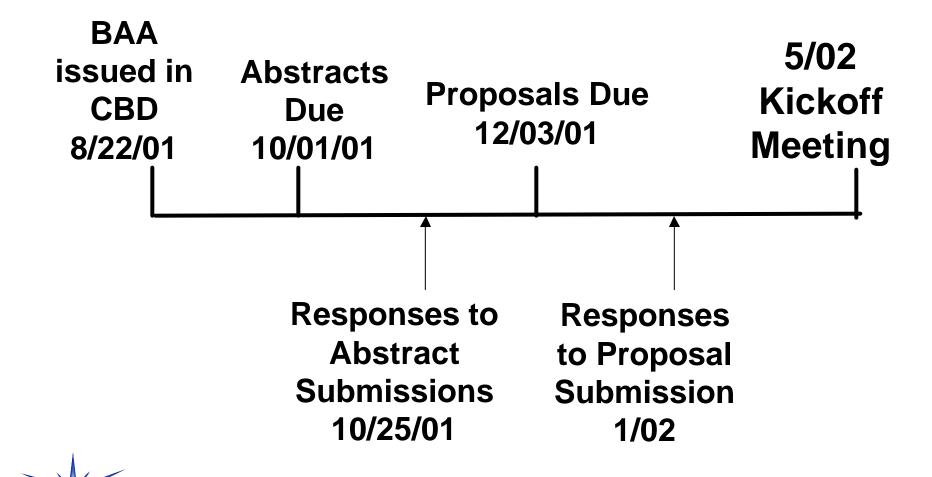
- Substrate technology
 - High quality (low defect) bulk starting materials
 - Surface preparation
- Epitaxial technology
 - High growth rates for thick layers
 - Low defects
 - Doping control and uniformity
- Processes
 - Oxidation
 - Doping activation

Microsystems Technology Office_

Task 2: High Power Devices

Device Performance Goals:

- Power handling capabilities
 - Standoff voltages in the 10,000 V range
 - Conduction currents in the range of 1 KAmp
 - Power in the megawatt range
- Very low on-state resistance to minimize power dissipation in device
- Operating frequency > 150 KHz, high duty cycles


Task 3: High Power Integrated Power Circuit Technologies

- Electronic Integration for high-current, high voltage switches, control logic gates and passives
 - Monolithic or heterogeneously integrated in common substrate
- Intelligent high power controller ICs
- Thermal management

- WBGS Technology Initiative Overview
- BAA 01-35 Objectives and Structure
- Thrust I: RF/Microwave/Mm-wave Technology Area
- Thrust II: High Power Conversion and Distribution Electronics
- BAA 01-35 Procurement Process

BAA01-35 Schedule*

*Does not include future BAAs

Wide Bandgap Semiconductor Technology Evaluation Criteria

- Overall scientific and technical merit
- Potential contribution and relevance to the DARPA mission
- Plans and capability to accomplish technology transition
- Offeror's capabilities and related experience
- Cost realism

Potential Contracting Vehicles and Types of Contracts

Procurement contract

Grant

Cooperative agreement

Other transactions

BAA 01-35 White Paper / Proposal Format

White Papers (Due October 1, 2001)

- Maximum 10 pages
- ROM estimation
- Summary of intentions
- 15 copies required

Proposals (Due December 1, 2001)

- Maximum 50 pages
- Cost estimate broken down by task and by year
- Detail descriptions of proposed activities
- 15 copies required